Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-976578.v1

ABSTRACT

Coronavirus Disease 2019 (COVID-19) pneumonia is a life-threatening infectious disease, especially for elderly patients with multiple comorbidities. Despite enormous efforts to understand its underlying etiopathogenic mechanisms, most of them remain elusive. In this study, we compared differential plasma miRNAs and cytokines profiles between COVID-19 and other community-acquired pneumonias (CAP). A first screening and subsequent validation assays in an independent cohort of patients revealed a signature of 15 dysregulated miRNAs between COVID-19 and CAP patients. Additionally, multivariate analysis displayed a combination of 4 miRNAs (miR-106b-5p, miR-221-3p, miR-25-3p and miR-30a-5p) that significantly discriminated between both pathologies. Search for targets of these miRNAs, combined with plasma protein measurements, identified a differential cytokine signature between COVID-19 and CAP that included EGFR, CXCL12 and IL-10. Significant differences were also detected in plasma levels of CXCL12, IL-17, TIMP-2 and IL-21R between mild and severe COVID-19 patients. These findings provide new insights into the etiopathological mechanisms underlying COVID-19.


Subject(s)
Communication Disorders , Communicable Diseases , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.08.21254348

ABSTRACT

Many new aspects of COVID-19 disease, including different clinical manifestations, have been identified during the pandemic. The wide array of symptoms and variation in disease severity after SARS-CoV-2 infection might be related to heterogeneity in the immune responses of different patients. Here we describe a new method for a simple multi-antigen serological test that generates a full picture of seroconversion in a single reaction. The assay is based on the detection by flow cytometry of multiple immunoglobulin classes (isotypes) specific for four SARS-CoV-2 antigens: the Spike glycoprotein (one of the highly immunogenic proteins), its RBD fragment (the major target for neutralising antibodies), the nucleocapsid protein and the main cysteine-like protease. Until now, most diagnostic serological tests measured antibodies to only one antigen and some patients seemed to not make any antibody response. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. Combining all the four antigens and using machine learning techniques, it was possible to clearly discriminate between patients and healthy controls with 100% confidence. Further, combination of antigens and different immunoglobulin isotypes in this multi-antigen assay improved the classification of patients with mild and severe disease. Introduction of this method will facilitate massive screenings of patients to evaluate their immune response. It could also support vaccination campaigns both to select non-immune individuals and to distinguish infected patients from vaccine responders.


Subject(s)
Infections , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.16.20155853

ABSTRACT

Currently, there is a need for reliable tests that allow identification of individuals that have been infected with SARS-CoV-2 even if the infection was asymptomatic. To date, the vast majority of the serological tests for SARS-CoV-2 specific antibodies are based on serum detection of antibodies to either the viral spike glycoprotein (the major target for neutralising antibodies) or the viral nucleocapsid protein that are known to be highly immunogenic in other coronaviruses. Conceivably, exposure of antigens released from infected cells could stimulate antibody responses that might correlate with tissue damage and, hence, they may have some value as a prognostic indicator. We addressed whether other non-structural viral proteins, not incorporated into the infectious viral particle, specifically the viral cysteine-like protease, might also be potent immunogens. Using ELISA tests, coating several SARS-CoV-2 proteins produced in vitro, we describe that COVID-19 patients make high titre IgG, IgM and IgA antibody responses to the Cys-like protease from SARS-CoV-2, also known as 3CLpro or Mpro, and it can be used to identify individuals with positive serology against the coronavirus. Higher antibody titres in these assays associated with more severe disease and no cross-reactive antibodies against prior betacoronavirus were found. Remarkably, IgG antibodies specific for Mpro and other SARS-CoV-2 antigens can also be detected in saliva. In conclusion, Mpro is a potent antigen in infected patients that can be used in serological tests and its detection in saliva could be the basis for a rapid, non-invasive test for COVID-19 seropositivity.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.15.20131706

ABSTRACT

Background: SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the pathogenesis and outcome of COVID-19. We aimed to investigate which specific responses from either cellular or humoral immunity associate to severity and progression of COVID-19. Methods: A cohort of 276 patients classified in mild, moderate and severe, was studied. Peripheral blood lymphocyte subpopulations were quantified by flow cytometry, and immunoglobulins and complement proteins by nephelometry. Results: At admission, dramatic lymphopenia of T, B and NK cells associated to severity. However, only the proportion of B cells increased, while T and NK cells appeared unaffected. Accordingly, the number of plasma cells and circulating follicular helper T cells (cTfh) increased, but levels of IgM, IgA and IgG were unaffected. When degrees of severity were considered, IgG was lower in severe patients, suggesting an IgG consumption by complement activation or antibody-dependent cellular cytotoxicity (ADCC). Activated CD56-CD16+ NK-cells, which mediate ADCC, were increased. Regarding complement, C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, compared to healthy donors. Moreover, IgG and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Conclusion: Our study provides important clues to understand the immune response observed in COVID-19 patients, which is probably related to viral clearance, but also underlies its pathogenesis and severity. This study associates for the first time COVID-19 severity with an imbalanced humoral immune response characterized by excessive consumption of IgG and C4, identifying new targets for therapeutic intervention.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19 , Lymphopenia
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.13.20100925

ABSTRACT

The SARS-CoV-2 is responsible for the pandemic COVID-19 in infected individuals, who can either exhibit mild symptoms or progress towards a life-threatening acute respiratory distress syndrome (ARDS). It is known that exacerbated inflammation and dysregulated immune responses involving T and myeloid cells occur in COVID-19 patients with severe clinical progression. However, the differential contribution of specific subsets of dendritic cells and monocytes to ARDS is still poorly understood. In addition, the role of CD8+ T cells present in the lung of COVID-19 patients and relevant for viral control has not been characterized. With the aim to improve the knowledge in this area, we developed a cross-sectional study, in which we have studied the frequencies and activation profiles of dendritic cells and monocytes present in the blood of COVID-19 patients with different clinical severity in comparison with healthy control individuals. Furthermore, these subpopulations and their association with antiviral effector CD8+ T cell subsets were also characterized in lung infiltrates from critical COVID-19 patients. Collectively, our results suggest that inflammatory transitional and non-classical monocytes preferentially migrate from blood to lungs in patients with severe COVID-19. CD1c+ conventional dendritic cells also followed this pattern, whereas CD141+ conventional and CD123hi plasmacytoid dendritic cells were depleted from blood but were absent in the lungs. Thus, this study increases the knowledge on the pathogenesis of COVID-19 disease and could be useful for the design of therapeutic strategies to fight SARS-CoV-2 infection.


Subject(s)
Respiratory Distress Syndrome , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL